Rudolph
TECHNICAL DESIGN DOCUMENT

Nick Bossy

Mike Koslap

February 14, 2005

3rd revision
Product Overview

1.1 Description of final product

The player’s goal in this game is to control Rudolph the red-nosed reindeer though various levels of Santa’s workshop to escape a life of sleigh pulling. The play style is that of 3D platform games, with obstacles to negotiate, enemies to avoid, bosses to beat and upgrades and secrets to find. We intend for the game to emphasize problem solving rather than combat. The player will not have any gauge of health. Rather, if an enemy captures them, they will lose a life. You are allowed to lose three lives per level.

The player’s primary means of navigating the hazards of the world will revolve around a few simple actions. A player will be able to jump, kick, and use various nose abilities. Although you will always be able to jump and kick, nose abilities must be obtained by finding nose buffers. Nose power will be drained with use of these powers, so a player must rebuff his nose often, or find reindeer treats to increase the maximum brightness.

This game will be written to run on multiple platforms due to the multi-platform nature of the engine we are using. Odds are the game will be small enough that it can be downloaded rather than distributed on CD or another physical medium.

1.2 Potential difficulties

From a programming perspective, enemy AI should be the most daunting task. Due to the fact that we will be using Torque for this project, collision detection (our other major concern) seems to be much less intimidating. The programming difficulties will become more fleshed out as we become accustomed to the engine.

From an artist perspective, our artists are familiar with Maya, not 3D Studio Max. This could provide difficulties with the animation importing into Torque. We will determine if this is an issue when we come to it.

1.3 Asset conversion process

The animation files will most likely be handled as .DSQ files for each of the character animations. Simple objects, such as doors and the nose shiners will have all of their animations stored in .DTS files. The source code will be primarily in .CS format, as that is the format used by Torque.

2 Game Mechanics
2.1 Animation system

Torque has a rather elegant for handling animation. After all of the animations are put into the proper formats, a single .CS file will be able to handle the animations. These animations will be tied into specific occurrences, such as when W is pressed, initiate the running forward animation, and halt the animation when W is released. Enemy animations will rely on specific occurrences, as modeled by the AI behavior discussed below, such as spotting Rudolph, or getting into attack range. Object animations will be triggered by specific events, such as kicking a door, or using nose heat near a snow pile.
2.2 Physics system

The physics of this game will be fairly simple. Acceleration will not be a factor except for jumping (which can be handled using a parabolic curve) and the deceleration of the suicide toys (method to be determined). Friction may be changed in the icy areas of the second level, but we would be able to use the same model as used for the suicide toys for the acceleration/deceleration of Rudolph. The values associated with these systems will most likely be stored in a separate data file for easy modification during development.
2.3 Player Character State Machines

The player character will have a few key values associated with it. These are as follows: number of lives, nose brightness, cold level, current location in the level, and nose abilities obtained. The first three can be stored as integer values and should be available for quick access by the HUD. The nose abilities will be stored in and array of Boolean values, each element representing a power. The value will be false if you do not have the power, and true if you do. The current location in the level will be represented in a manner that best fits Torque. We need to analyze the demos before coming to a conclusion there. All of these values will be stored in a player character class.

2.4 HUD

We will most likely use a bar for temperature in the snow level, a counter for the number of remaining lives, and either a bar or an icon to represent how clean or dirty Rudolph’s nose is. The game will be played from a third person perspective, so a crosshair would be unnecessary. Also, the style of game we are trying to create eliminates the need to display health, as on hit will “capture” you.

All of these attributes we have mentioned above will be part of the class we will create to represent Rudolph. Hopefully, linking these numbers to a physical representation should not prove difficult in Torque.

2.5 User Interface
The user interface will be simple. There will be an opening screen, with the choices of starting the game, choosing a level, exiting the game, changing options, and possibly loading. The in game menu will have the same options, along with the ability to resume the game, and possibly to save the game. This will become more distinct as we decide which of these features should be implemented, as we have yet to decide whether there will be a save system.
When the start game option is selected, or a level is chosen under choose level, a loading screen will appear while the setup code is executed for the level in question.

The game will be played from a third person perspective.

When in game, the controls will be relatively limited. ‘W’ will move the character forward, ‘S’ will move it backward, ‘Q’ will strafe left, ‘E’ will strafe right, ‘A’ will turn left, ‘D’ will turn right, ‘Space’ will make the character jump, ‘Left mouse’ will use a nose power, and ‘Right mouse’ will cause the character to kick with its back legs. The ‘G’ key will throw a toy, which can distract enemies. Alt will toggle between nose powers (due to the limited number of powers, an individual key for each is unnecessary). The page up/down keys will control altitude while using the flight ability. Finally, the ‘tab’ key will enable free camera movement.
2.6 AI – Enemies

The common enemies in our game can be split into two main types: patrolling enemies and stationary enemies. A greater description of the desired actions of each enemy can be found in the GDD, or below where we describe the code.
None of the enemies will be able to open doors or climb up walls or boxes. For all intents and purposes, their movement is restricted to a 2D plane. This will not, however, prevent them from launching attacks at the player if he is on a different plane (snowmen will throw snowballs at you even if you are on a box, etc.)
2.7 AI – Bosses

The boss fights will revolve around the completion of certain tasks while the boss hounds you. Although they will have a slightly more sophisticated AI, we have not yet determined what their behaviors will be as of yet.

2.8 Game Object System

There will be six basic objects that a player will encounter in the world (this is subject to change): Blocks, doors, switches, magic treats, nose shiners, and toys. These can be further consolidated into four types. Toys and magic dust are items you can pickup, they will affect the values in the player character’s class and disappear when taken. Doors and switches can fall into the same category, as they are essentially two state objects, either on (open) or off (closed). Blocks can come in numerous forms, such as ice blocks you can melt, or ones that you can kick out of the way. Finally, nose shiners both affect the player’s status and recharge after a time, so they must have an on/off value.

2.9 CPU Usage Projection

Due to the fact that we are programming a 3D game, a 3D accelerator may be necessary. Also, the user will most likely have to be running Windows, as that is the only platform we currently have plans to develop for .This could change, however, as it seems that Torque-script may not be platform specific.
2.10 Game Size Usage Projection

Judging from the size of the demos provided with the Torque software, our game could be anywhere from 20 to 30 megabytes. Mind you that this is a rough estimate, and it will be difficult to determine how much space will actually be used until the product is close to completion. Most of this space will most likely be taken up by the 3D models and animation files.
2.11 Save Game System

The player will be able to save at any position in the map while not in a combat scenario. All enemies will all be reloaded to their default states when the game is loaded again, with the exception of elves who were incapacitated by toys and toys that were destroyed/knocked over.
3 Code Design

3.1 Program design

The code that we will be writing will be divided into two modules: a client side and a server side. Although our game will not be multiplayer, this will help us organize our code. The client side will include the code to handle input, interfaces, and coordinating game setup with the server side. The server side will control game mechanics and features, such as how to handle Rudolph, enemies, and objects in the world.

3.2 Controls

One file will handle the controls. It will create the keymap that links the controls to functions to make Rudolph perform various actions. Each of these functions will also control the sound effects associated with the action. The actions and their respective keys are described in the GDD.
3.3 Rudolph

Rudolph will have at least one code file to himself. This file will define a datablock for Rudolph, which will contain his attributes. These include number of lives, mass, nose brightness, run speed, and numerous others that Torque supports. This file also contains the following files relating to Rudolph (remember that this is an outline, other functions may be added based on need):
OnAdd and OnRemove: These functions are concerned with the initialization and removal of Rudolph.

OnCollision: This function will govern toy and treat pickup, snowball impact, net impact, suicide toy impact, and various other collisions that will occur with the player.

OnCaught: This function is called when Rudolph is captured. It does things such as decrementing lives and disabling player control.

There will also be some functions and datablocks regarding the loading and playing of sounds, but this cannot be fleshed out until we are certain what sound effects will be used.

3.4 Nose

There will be a file to handle nose powers. There will be four Obtain functions which will be called when the appropriate buffers are used. These will set the appropriate variables to enable the nose power acquired. There will also be four OnUse functions, which will govern the effects of each nose power and the drain on nose brightness. Finally, there will be a DazzleRadius and HeatRadius functions to define the radius effects of those respective powers. There will also be two special Obtain functions for the boss fight nose powers. These will not grant the power until the conditions are met, and the powers will be deactivated after their respective OnUse functions are called.
3.5 Items

There will be a file to handle items. This file will have two datablocks: one for toys and one for reindeer treats. These will include the effects of the respective item. There will be a OnPickup function for toys and a OnCollision function for reindeer treats. There will be a Create function for each of these two items if we find it to be necessary.

3.6 Attacks

There will be a file that takes care of non-nose related attacks. There will be a OnKick function called when Rudolph performs a kick. It checks if any enemies were hit by the kick, and stuns them if they were. There will also be three datablocks: one for snowballs, one for nets, and one for smoke. There will also be three OnCollision functions for each of these attacks.

3.7 Environment Objects

There will be a file that governs doors, buffers, mirrors, magnifying glasses, and other reindeer that will help you. There will be a datablock for each of these, along with a OnUse function for each which will be activated when the player presses the use key when near the object. The OnUse function will, in the case of a door, open/close it. In the case of a buffer, it will activate the appropriate Obtain function and set the nose brightness to max. Mirrors and magnifying glasses would have their OnUse function (possibly called OnHeat instead) activates when they fall within the radius of the heat nose ability. For the reindeer, the OnUse function will activate a preprogrammed speech, specific to each reindeer (note: the reindeer may have their own file depending on the complexity involved).
3.8 Save/Load System

The save game system will save the current level, Rudolph’s position and status, and the alive/dead status of the enemies on the level. When the game is loaded, the level is loaded as normal, but the values for where to spawn Rudolph, Rudolph’s statistics, and the alive/dead status are changed appropriately. Enemy position and action at the time of the save will not be recorded, only the alive/dead status. They will be initialized as if the level had just started.

3.9 Regular Enemy AI

Each patrolling enemy will have a variable that declares its current state. The states are: patrolling, stunned, chasing, and neutralized. When patrolling, the enemy follows a specific path represented by an array of world coordinates (waypoints), and a counter that keeps track of which point it is going to. When the enemy reaches the last point in the array, the counter will then point to the first coordinate, repeating the patrol. It will also have a bounding circle around it that represents its sight. This circle is blocked by walls and doors. If Rudolf collides with it, the enemy will change to the chasing state, and store Rudolf’s position at the time in another variable.

Elves and trains will immediately move towards Rudolf’s position and continuously update where he is as long as they can “see” him. They will also attack him when they are close enough. Each elf has a boolean variable that states if they have a net, and this is set to true at the start of the level. When the elf throws the net to capture Rudolf, it will be set to false. On a hit, Rudolf is captured and loses a life, and on a miss, the elf will run to the net and pick it back up, setting the net variable to true. Trains will blow smoke at Rudolf, decreasing his nose brightness, and start a timer that counts how much time until it can blow smoke again.

If Rudolf outruns a patrolling enemy, turns a corner, or closes a door, it will move to his last known position to try to find him. If it can’t, it will use a distance algorithm to find the nearest waypoint of their patrol, and return to its patrolling state. If Rudolf kicks or bedazzles an elf, it will move to the stunned state, and start a timer. The enemy will perform its stunned animation until this timer runs out, when it will return to the patrol state. If Rudolf drops a toy and an elf sees it, it will immediately change to the neutralized state, move to the toy’s position, and play its “playing” animation indefinitely. A neutralized elf will not change states again for the duration of the level. Trains can’t be stunned, but kicking a train will play its death animation, and remove it from the game state.

The one-shot toys have a different chasing method. They move directly to their known position for Rudolf, but do not keep updating it. If it reaches the known position without colliding with Rudolf, it will keep moving three game yards before stopping. Once it stops, it will resume its patrolling state. If the toy hits something before stopping, it will break up, and may have other effects: hitting Rudolf will capture him, while hitting another toy or elf will neutralize that enemy. One-shot toys do not have a stunned state.

Snowmen are the only stationary enemies, and have a sight bounding circle like the patrolling enemies. When Rudolf enters this area, the snowman will throw a snowball at Rudolf’s position, and then wait a certain amount of time before throwing another. Snowmen can throw ice balls to increase the cold meter, or dirty snowballs to decrease nose brightness, and the type of snowball thrown is chosen by a random number generator. If Rudolf’s cold meter fills up, he loses a life. When Rudolf kicks a snowman, the snowman plays its death animation and is removed from the game state, while using the heat nose power on a snowman makes that snowman play its melting animation and run a stunned timer before reconstituting.
3.10 Boss AI

Smartie, the head elf, will have an AI similar to that of the regular elves in terms of movement. The net attack will be replaced by an algorithm to place one-shot toys. He will have a collision function relating to these toys, so that if he should run into one, the toy will be destroyed and he will be stunned.
Frosty will have an AI almost identical to that belonging to the regular snowmen. The only function code differeneces will be the model used and the addition of health, due to the nature of the fight.

Santa will have a relatively simple AI. He will wander around in a random fashion. He will have a timer set to one second which will decrement when Rudolph uses the buffer on his back. When the timer expires, Santa’s location will be changed to a different random spot in the room, and a enemy will be placed in his previous location (time delay before enemy appearance). If Santa spots a broken toy, he will be “distracted by it”, and his timer will be set to 6 seconds.
4 Description of hardware/software environment

4.1 Coding Standards

Comments are placed before the prototypes of a function, describing the function’s purpose, its inputs and the returned value. Comments will also be used for blocks of code that are not straightforward. Functions will usually serve one purpose, and functions that make multiple changes will call on lower functions to handle individual changes. Our first concern will be readability, as this will be an open source endeavor.
4.2 Revision Control

We will most likely use Subversion SVN for revision control. This system works well as long as there is a server that we can use as a repository.

4.3 Third Party Tools

The majority of the programming will be done using the Torque-scripting, and the level design will be done using the Torque GUI. Modeling and animation will be done Maya.
5 Backup (contingency) plans

Two of our boss battles (Head elf and Frosty) can be removed if we are short on time. Also, if our artists are overworked, it is possible to remove some enemy times from the game.

6 List of all proposed participants

6.1 Nicolas Bossy, Programmer

I have a lot of experience in object-oriented programming, especially C++. I’ve recently taken a course in three-dimensional graphics, but no experience with control systems outside of that course. My only experience with AI is from an introductory robotics course, so I may need to study that if necessary.

6.2 Michael Koslap, Programmer

I have a good deal of experience in C/C++ programming, with a passing knowledge of Visual Basic. I have taken a course in 3D Graphics recently, so I am comfortable with many of the underlying principles of programming in 3D. All of my knowledge of AI comes from independent readings, and I have never coded anything sophisticated. I am willing to work as much as necessary and I am not afraid to ask questions if I need help.

6.3 Jelani John, Designer

I major in Computer Science and Psychology and desire to become a game designer or writer. I’m an experienced programmer and have a love of video games. I enjoy scripting mini games and I have a passion for expressing my creativity.
6.4 Jeff Onken, Artist
I will be receiving my major in Physics & Computer Science and a minor in Electronic Art. I have been working in computer art for over eight years, and specifically in 3D programs for four. I have been learning Maya for the past two years. I have used Photoshop extensively and have made countless textures for both 2D and 3D art. I have an incredible passion for creating artwork both on the computer and on paper, and hope to work on a large-scale production as a 3D artist in my future
.

6.5 Jason Partridge, Artist

I am a physics and computer science major. I have about two years of experience in 3D modeling, but I am relatively new to Maya and all of its features. I have, however, been able to model several lifelike scenes and images in Maya successfully.

Revised 2/13/2004

Page 6

