KENDO FREEFALL

TECHNICAL DESIGN DOCUMENT

AUTHORS:

Jon Skrzynski

Paul Sorensen

Edited: Jelani John
DATE: 11/28/02

REVISION #2
Product Overview

1.1 Description of final product

The completed product will be a vertically scrolling game played by exactly two players at a time. The players will be falling and must avoid stationary obstacles while trying to force the other player into them. Contact with obstacles causes players to lose energy, and the player who loses all of their energy first will be the loser. Scoring will be based on the amount of time that a player can last until they lose all of their energy.

1.2 Technical design strategy

Given the coding style, the design will be a mix of DirectX objects and C-style functions and structs. Classes will often be avoided in favor of speed (so, the code will be more like C as opposed to C++)

1.3 Potential difficulties

- Physics

- Collision detection

- Sprite animation

- AI for computer-controlled character

1.4 Asset conversion process

All of the assets will be in a format that does not need conversion (e.g. bitmaps and wavs) to avoid the overhead it would cause.

2 Code design

2.1 Scrolling engine

The background will be a continuously scrolling, tilable bitmap drawn on two surfaces. As one surface scrolls past the bottom of the screen, the other will be translated directly beneath it so as to make the two surfaces appear as one seamless surface.

2.2 Collision Detection

The collision detection will be very simple. Bounding boxes and/or bounding circles will be used in all calculations.

Bounding circles example:

// Position of two objects:

P1 and P2

// Radii of bounding circles:
R1 and R2
// calculate the distance between the two points using the distance formula

distance = sqrt((P1.x – P2.x)2 +((P1.y – P2.y)2)

// check if the distance is less than the sum of the two radii

if (distance < (R1 + R2))

// there is a collision

else

// there is no collision

2.3 Sprite / Character handler

Each interactive object will be represented by a state machine, which will take as input the current sprite object, and the current time (or current frame). This state machine will calculate the correct image to be displayed on the screen.

For example, if a user-controlled player is receiving no input (the user is not pressing keys on the keyboard and is not moving the mouse) then the current action for the object will be idle. The idle sprite, whether or not it is animated, should loop. So, given that the idle sprite is animated, if there is no input received in the time it takes to show the idle animation, it loops back to the start of the animation.

If a given animation does not loop, it must have a next action. For example, if a user initiates the jump animation by pressing the jump key and presses no other keys by the time the jump animation completes, then the next animation should be idle. If they do, however, initiate an action, then the animation for the new action will be shown. Of course, rules will have to be enforced as to whether or not animations can be interrupted. As an example, a player should not be allowed to do anything else if they are in the middle of jumping. So, the data structure representing a sprite animation will contain a Boolean variable representing whether or not it is interruptible.

The objects (player, obstacle, etc.) will be represented by an array of sprite animations. Each sprite animation (series of images representing an action such as a jump) will be represented by a structure somewhat like the following:

typedef struct _sprite

{

unsigned int

uintTextures;

unsigned int

uintLoops;

float

fltIncrement;

physics *

ptrLPhysics;

physics *

ptrRPhysics;

physics *

ptrPhysics;

LPDIRECT3DTEXTURE8 *
ptrTextures;

} sprite;
Keep in mind some sprite animations may contain only one image, in which case they Loop, are Interruptible, and do not have a valid Length (the Length is not used since there is only one image to display). For example, the rocks.
Example pseudocode:

To initiate a new action, check if the current action is interruptible:

IF (the sprite is not animated)

DO new action

ELSE

IF (the sprite is interruptible) OR (the sprite’s animation has finished)

DO new action

ELSE

DON’T DO new action

END IF

END IF
2.4 Input handler

The input handler is not very complex. It contains the mapping of keys to actions (i.e. space bar -> jump) and given a key press, will pass the correct action to the Sprite / Character Handler for processing.

To simplify the specification of actions, an enumeration will be declared somewhat like the following:

enum Actions

{

IDLE,

JUMP,

CROUCH,

MOVE_LEFT,

MOVE_RIGHT,

ATTACK_HIGH,

ATTACK_MED,

ATTACK_LOW

};

Keep in mind that these are example actions; they may or may not appear in the actual game.

2.5 Game state

The Game State updates the physical attributes of all the objects currently present in the game. For a given object’s velocity at the current frame, the position will be updated. An object’s velocity is determined by it’s current state (in the Sprite / Character Handler) and the new position is passed to the Collision Detection. If a collision is detected, the Sprite / Character Handler may have to be updated for the objects involved in the collision.

Pseudocode:

FOR each object with velocity != 0

Calculate new position

END FOR

FOR each object i with velocity != 0

FOR each object j

IF collision(i, j)

handle collision logic

END IF

END FOR

END FOR
2.6 HUD

The HUD will be very simple and consist of health meters for both players and a timer at the top of the screen.

2.7 UI Screens

This will also be kept relatively simple. It starts at the main menu and from there a player can select more specific menus like sound, controls, start game, video, exit, etc.

Game Size Usage Projection

The largest aspect of the media will be the background. While the background doesn’t need to be very wide, it should be considerably long, so that it does not seem so repetitive as it is scrolling continuously. This will likely be over half of the total game size. Including the other media, the game will likely be less than ten megabytes.

2.8 Save Game System

As of yet, there are no plans to implement a game saving feature.

2.9 Audio system

The sound will be implemented using the DirectSound API.

3 Description of hardware/software environment

3.1 Coding Standards

This project will be written using Hungarian notation to aid in readability.

3.2 Revision Control

We will be using Microsoft Visual SourceSafe, assuming that the Omega Worlds project secures a copy of this software and successfully sets up the environment.

3.3 Third Party Tools

- Adobe Photoshop

- Microsoft Visual C++

- Avid Softimage XSI

3.4 Custom Tools

[none]

4 Backup (contingency) plans

The current game design is fairly bare bones as is. However, there are still some sections of the game that could be minimized if need be:

· Implement only one obstacle type (instead of the proposed three)

· Have only one playable character (instead of the proposed three)

· User Interface cutbacks – don’t let player save control key mappings

As for the high-risk items, collision detection and sprite animation are both critical to this game and must be successfully implemented. The physics, however, do not have to be ultra-realistic for the game to be enjoyable.

If there is a problem implementing the AI for the computer controlled character, then it would be a possibility to make this game for two-players only. This course of action is an extreme solution, and would only be undertaken if the AI were not working at all.

5 List of all proposed participants

Jon Skrzynski is a fourth year computer science student respectably versed in 3D graphics. When he is not at school, he lives in sunny Marco Island, Florida and cruises around in his 1993 Mazda RX-7 twin-turbo.

Paul Sorensen is a senior computer science and emac dual major with experience in 3D computer graphics, both real-time and pre-rendered. He has taken the ECSE-4750 Computer Graphics course, and has completed several EMAC animation courses using Avid’s Softimage and Alias|Wavefront’s Maya. He is originally from Johnston, Rhode Island.

Amanda Kirk is a freshman computer science and EMAC dual major. She will be the primary artist for this game.

Chandler Rowland is a freshman computer science. The Kendo Freefall game concept is his brainchild, and he will be involved in game design and testing.

Jelani John is a freshman in computer science and psychology dual major. He has experience with Macromedia Fireworks, Macromedia Flash, and Macromedia Dreamweaver. He can program in C, C++, and enjoys learning new computer languages. He hails from Brooklyn, NY.

6 Appendices

List of Structures:

Sprites

Each sprite, whether it is animated or not, will be represented by a structure:

struct sprite

{

image * frames;

int NumberOfFrames;

float Length;

bool Loop;

bool Interruptable;

};

This structure and it’s properties are explained in the Sprite / Character Handler section.

Objects

An object, which consists of one or more sprites and several other properties, will be represented by a structure:

struct object

{

float CurrentVelocity;

vector CurrentDirection;

vector CurrentPosition;

sprite * Sprites;

int NumSprites;

int CurrentAnimationIndex;

};

CurrentVelocity and CurrentDirection are how fast the object is moving and in what direction. CurrentPosition is where the object is in the scene. The different visual states are stored in the Sprites array (the sprites can be either animated or static), and NumSprites is how many there are stored in the array. CurrentAnimationIndex is what sprite is currently being displayed in the array.

General

The general scene and program parameters can also be organized into a struct (to avoid global variable clutter). The properties of the structure will definitely change as the game undergoes development, but it will have at least the following members:

struct globalParameters

{

int WindowWidth;

int WindowHeight;

float ScrollSpeed;

};

START

Load Menu

Wait for input

Update screen

Store changes

Load Sounds and Images

Initialize State Variables

Read Input

Update State

Draw Frame

Increment Variables

Detect Collisions

Determine Animated Sprite Frame

Not done

Menu Loop

Free memory

Free Devices

Exit

Exit game

END

Shutdown

Start game

Initialize Game

Game Loop

Not done

Done

BASIC GAME FLOW DIAGRAM

void DrawBackground()

This function draws the background. The appearance of the background is dependant upon values stored in the game state.

This function draws the players and obstacles in their proper positions on the screen. The current animated character sprite frame is determined during the “Update State” phase. If stars and the like are drawn where collisions are made, then that will also be done here.

void DrawObjects()

This function draws the health meters, timer, and any messages to the screen (e.g. “pause”, “hit”, “quit?”, etc.).

void DrawOverlay()

Rendering Routine

State Maintenance

